
W.lerchants' Bridge

Rough calculations

1. Assess deflection (assume straight bridge)

$122 \mathrm{~cm}^{2}$

- WORKOUT IX (INERTIA) - Assume beam DEPTH D/2

$$
\begin{aligned}
& \nearrow \\
& \text { (} D=A R C H \text { RISE) } \\
& \text { FIND }_{y} \ldots A=2000 \times 1.0 \times 2+122 \times 2=644 \mathrm{~cm}^{2} \\
& \begin{aligned}
\bar{y}=\frac{644 \times 32.5 / 2+122 \times(365 / 2)}{(644+122)} & =42.7 \mathrm{~cm} \\
& \sim 430 \mathrm{~mm}
\end{aligned} \\
& { }_{0.0}^{0} I_{y}=\left[644+(43-32.5)^{2}+122(365 / 2-43)^{2}\right] \\
& =2.42 \times 10^{6} \mathrm{~cm}^{4} \\
& \equiv 24.2 \times 10^{9} \mathrm{~mm}^{4}\left(\times 10^{4}\right. \text { conversion) }
\end{aligned}
$$

Simply suppreied Deflection $=5 \mathrm{wL} / 384 E T$

$$
\text { where } \begin{aligned}
w & =350 / 38 / 2 \\
& =4.6 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Wherchants' Bridge
Rough calculations
Deflection (bending) Continued \qquad
Deflection

$$
\begin{aligned}
& \Delta_{n}(b L)=5 \mathrm{wL}^{4} / 384 E I \rightarrow w=4.6 \mathrm{kw} / \mathrm{m}^{2} \\
& =4.6 \times 2 \\
& =9.2 \mathrm{kN} / \mathrm{m} \\
& \text { line load } \\
& \therefore \Delta_{n}=\frac{5 \times 9.2 \times 38000^{4}}{384 \times 21063 \times 24.2 \times 10^{9}}=49 \mathrm{~mm}
\end{aligned}
$$

LIve (Angl)) Pro-Rata from DÉAD

$$
\left.\Delta n \underset{l l}{\left(\text { Live } 10^{9}\right)}\right) \sim(3 / 4.6 \times 49) / 10=3 \mathrm{~mm}
$$

$$
\begin{equation*}
\text { TOTAL }(D L+10 \% U) X_{n}=49+3 \tag{=52~mm}
\end{equation*}
$$

Merchants' Bridge Rough calculations
2. ToRSIon - see hit sheet

from hint sheet

$$
\begin{aligned}
& \text { Torsion } \\
& T=P . l_{a}
\end{aligned}
$$

$$
-L_{a}=2.7 \mathrm{~m}
$$

(27.70 mm)
Approximation -FRau RE 2.9.17. pg. 109
P-take bead load over $1 / 2$ span

$$
\begin{aligned}
& \text { 1.e. } P=(350 / 2) \leq 175 \mathrm{kN} \\
& \mathrm{kN} \\
& \therefore T=P . \mathrm{lal}_{\mathrm{ar}}=175 \times 2.7=473 \mathrm{kNm}
\end{aligned}
$$

Rotation (\varnothing)

$$
\phi=T L / a j=\frac{(473 \mathrm{~Eb}) / 2 \times 38000 / 2}{78000 \times J \text { see overbear. }}
$$

Wherchants' Bridge
Rough calculations
Torsion Continued....

$$
I^{\hat{A}} 25 \mathrm{mw}(32.5 \mathrm{~cm})
$$

$$
\int_{B(2000 \mathrm{~mm})}^{1} \text { T(10) Trion Constant }(J)
$$

For Honow (TUIN WAU)Box:

$$
\begin{aligned}
J \sim \frac{2 t^{2} A^{2} B^{2}}{t(A+B)} & =\frac{2 \times 10^{2} \times 325^{2} \times 2000^{2}}{10(2000+325)} \\
& =3.63 \mathrm{Eg}_{\mathrm{mm}}{ }^{4}\left(363 \times 10^{3} \mathrm{~cm}^{4}\right)
\end{aligned}
$$

\therefore from previons sheer

$$
\begin{aligned}
& \phi=\text { TL/cy }=\frac{(4356 / 2 \times 38000 / 2)}{7863 \times 3.6349}=\frac{0.015}{\text { radiaus }} \\
& \text { Bn } \\
& \text { (Down /Veft) } \\
& \Delta_{n}=\text { WIDTH } / 2 \times \varnothing \\
& =5330 / 2 \times 0.015 \\
& =4 \text { Omm }(D \in A D)
\end{aligned}
$$

Wherchants' Bridge
Rough calculations
Torsion continued
TORSION $\Delta_{n}(109 / 0 L L)$ obtain PRo-RATA...

$$
\Delta_{n}(107 . L 6) \sim(3 / 4.6 \times 40) / 10=2.6 \mathrm{~mm} \sim 3
$$

ToM Torsion Component $\Delta_{n}=$

$$
=\Delta_{r}(D L+10 \% l l)=40+3=43 \mathrm{~mm}
$$

ADD (FROM PREWIOUSLY) BEEDNC! An
TOTAL COMBINED DEFLECTION $=51+43$

$$
=94 \mathrm{~mm}
$$

Fundamental natural frequency from briefing sheet

$$
f_{n} \sim 18 / \sqrt{8}=18 / \sqrt{94}=1.9 \mathrm{~Hz}{ }^{(\text {HERTZ }} \begin{aligned}
& \text { cycles } / \text { second }
\end{aligned}
$$

In situ reading (vibrate-ir App)
similar (see website)
close To estimate
W.lerchants' Bridge

Rough calculations
approximate peak excitation

Response excitation (acceleration) as a comparative measure of DYNAMIC RESPONSE

Reference- structural engineering ART \& APPROXIMATION (P.136-7/CHP2.12)

WEIGHT (MODAL MASS OT MASS
effective in response)

- W (BRIDES) - 350 kN
$(3500 \mathrm{~kg})$
- Mass faring the resonant respase up (person) -0.75 kN
$(75 \mathrm{~kg})$
Peak Acceleration RATio $(\mathrm{a} / \mathrm{g})$ To be found $\rightarrow a / g \sim 1.3 \alpha \omega \bar{\sim} \alpha$ - factor depending on aucility
10.5 WA LIKING) ar resonance
- DAmpinG RATIO $20.002(2 \%)$

OK For PEDESTRIANS

