Answers to Question 2

Simply Supported Beam

Answers

2(a)
$W_{\text {max. }}=3 \mathrm{kPax} 5 \mathrm{~m}$

$M m a x=W(u d) L^{2} / 8=10 \times 10^{2} / 8=125 \mathrm{kNm}$
$\Delta \mathrm{n}=5 \mathrm{~W}(\mathrm{ud}) \mathrm{L}^{4} / 384 \mathrm{El}$
$=5 \times 10 \times 10000^{4} / 384 / 205 \mathrm{e} / 615 \mathrm{e} 6$
$=10.3 \mathrm{~mm}$

10m span (7/cos45 ${ }^{\circ}$); peak load 15kN/m-See above. Multiply Area load x loaded width.

2(b)
125 kNm - This is $\mathrm{wl}^{2} / 8$ for a uniformly distributed line load (UDL) of $10 \mathrm{kN} / \mathrm{m}$; obtained from the peak triangular load. ($15 \times 2 / 3$) with reference to figure 2.2.8. Slightly under is to assume UDL 50\% peak, but this is not 'conservative' (slightly under at $94 \mathbf{k N m}$). Actual triangular loading moment is $97 \mathbf{k N m}$.

2(c)
10.3 mm - Deflection from figure 2.2.3 [5w/4/(384El)]. UDL from 2(b) above of $10 \mathrm{kN} / \mathrm{m}$. Actual triangular load deflection is 7.8 mm (7.7 mm for UDL 50% peak).

2(d)
50kN for both cases. Maximum shear for the triangular loading is under the support on the right hand side (RHS). Using the equivalent UDL will always give a safe shear/support reaction.

